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A B S T R A C T

Here we build on the manifesto ‘World Scientists’ Warning to Humanity, issued by the Alliance of World
Scientists. As a group of conservation biologists deeply concerned about the decline of insect populations, we
here review what we know about the drivers of insect extinctions, their consequences, and how extinctions can
negatively impact humanity.

We are causing insect extinctions by driving habitat loss, degradation, and fragmentation, use of polluting and
harmful substances, the spread of invasive species, global climate change, direct overexploitation, and co-ex-
tinction of species dependent on other species.

With insect extinctions, we lose much more than species. We lose abundance and biomass of insects, diversity
across space and time with consequent homogenization, large parts of the tree of life, unique ecological functions
and traits, and fundamental parts of extensive networks of biotic interactions. Such losses lead to the decline of
key ecosystem services on which humanity depends. From pollination and decomposition, to being resources for
new medicines, habitat quality indication and many others, insects provide essential and irreplaceable services.
We appeal for urgent action to close key knowledge gaps and curb insect extinctions. An investment in research
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programs that generate local, regional and global strategies that counter this trend is essential. Solutions are
available and implementable, but urgent action is needed now to match our intentions.

1. Introduction

Insect extinctions, their drivers, and consequences have received
increasing public attention in recent years. Media releases have caught
the interest of the general public, and until recently, we were largely
unaware that insects could be imperilled to such an extent, and that
their loss would have consequences for our own well-being. Fuelled by
declining numbers from specific regions (Hallmann et al., 2017, 2020;
Lister and Garcia, 2018; Powney et al., 2019; Seibold et al., 2019; and
many other studies), concern over the fate of insects has gained traction
in the non-scientific realm.

Current estimates suggest that insects may number 5.5 million
species, with only one fifth of these named (Stork, 2018). The number
of threatened and extinct insect species is woefully underestimated
because of so many species being rare or undescribed. For example, the
IUCN Red List (version 2019-2) only includes ca. 8400 species out of
one million described, representing a possible 0.2% of all extant species
(IUCN, 2019). However, it is likely that insect extinctions since the
industrial era are around 5 to 10%, i.e. 250,000 to 500,000 species,
based on estimates of 7% extinctions for land snails (Régnier et al.,

2015). In total at least one million species are facing extinction in the
coming decades, half of them being insects (IPBES, 2019).

It is not only their vast numbers, but the dependency of ecosystems
and humanity on them, that makes the conservation of insect diversity
critical for future generations. A major challenge now and in the
coming years is to maintain and enhance the beneficial contributions of
nature to all people. Insects are irreplaceable components in this
challenge, as are other invertebrates and biodiversity in general.

Here we build on the manifesto World Scientists' Warning to
Humanity, issued by the Union of Concerned Scientists (1992) and re-
issued 25 years later by the Alliance of World Scientists (Ripple et al.,
2017). The latter warning was signed by over 15,000 scientists and
claims that humans are “pushing Earth's ecosystems beyond their capacities
to support the web of life.” (https://www.scientistswarning.org/the-
warning/). As a group of conservation biologists deeply concerned
about the decline of insect populations worldwide, we here review what
we know about the drivers of insect extinctions, their consequences,
and how extinctions can negatively impact humanity. We end with an
appeal for urgent action to decrease our knowledge deficits and curb
insect extinctions.

Fig. 1. Drivers (in red) and consequences (in blue) of insect extinctions. Note that drivers often act synergistically or through indirect effects (e.g., climate change
favours many invasive species and the loss of habitat). All these consequences contribute to the loss of ecosystem services essential for humans (see Table 1). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2. We are causing insect extinctions

Irrespective of the precise trends and their spatial distribution,
human activity is responsible for almost all current insect population
declines and extinctions. Yet, in order to act, we first need to identify
and quantify the different ways we are acting upon them, recognizing
that much is still to be understood, and more often than not, several
factors contribute synergistically to decline or extinction (Fig. 1).

2.1. Habitat loss and fragmentation

Habitat loss, degradation, and fragmentation are probably the most
relevant threats to biodiversity (Foley et al., 2005; Dirzo et al., 2014;
Habel et al., 2019a). Globally, 50% of endemic species of plants and
vertebrates are restricted to some 36 biodiversity hotspots covering just
2.5% of the Earth's surface (Mittermeier et al., 2004) and arguably,
these hotspots likely harbour similar percentages of endemic insect
species (Stork and Habel, 2014). Recent modelling suggests that agro-
economic pressure for land will reduce the currently very restricted
natural intact vegetation by a further 50% by 2050 in one third of the
world's hotspots (Habel et al., 2019b). Processes associated with de-
forestation, agricultural expansion, and urbanization are the proximate
drivers of loss of natural or semi-natural habitats and their insect as-
semblages across the world (Brook et al., 2003; Basset and Lamarre,
2019; Habel et al., 2019c). Mining is particularly relevant for sub-
terranean species, which are often spatially restricted (Mammola et al.,
2019a). Freshwater habitats additionally suffer from river flow reg-
ulation and damming (Dudgeon et al., 2006). Increased siltation in
rivers and streams from agricultural runoff (Wood and Armitage, 1997;
and references therein), as well as flow regulation, degrade habitats of
typical stream dwelling insect larvae (Jones et al., 2012). There is also a
significant loss of pond ecosystems largely due to agricultural land
drainage and urban development (e.g., Boothby and Hull, 1997; Wood
et al., 2003).

Habitat loss is often accompanied by habitat fragmentation, and
both lead to decreasing connectivity (Fischer and Lindenmayer, 2007;
Fletcher Jr. et al., 2018). However, depending on the mobility of the
insect species and the degree of habitat fragmentation their relative
importance varies. Insects with low mobility may survive in isolated
populations (e.g., many flightless Orthoptera; Poniatowski and
Fartmann, 2010; Poniatowski et al., 2018). In contrast, many species
with a higher mobility – such as butterflies – usually form metapopu-
lations (Hanski, 1999). They depend on a network of suitable habitat
patches of sufficient size and in spatial proximity (Eichel and Fartmann,
2008; Stuhldreher and Fartmann, 2014). However, in less fragmented
landscapes – even among metapopulation species – habitat connectivity
usually plays a minor role for patch occupancy. Here habitat quality is
the main driver of insect species occurrence (Krämer et al., 2012;
Poniatowski et al., 2018; Münsch et al., 2019). In these times of global
warming, habitat connectivity becomes increasingly important for all
insect survival. This is because insect range shifts in response to climate
change are often constrained by insufficient habitat connectivity in
fragmented landscapes (Platts et al., 2019), and so lag behind the in-
crease in temperature, even for mobile species (Devictor et al., 2012;
Termaat et al., 2019).

2.2. Pollution

Pesticides are key drivers of insect declines due to their intensive
use, as well as inappropriate risk assessment regulations (Brühl and
Zaller, 2019). Pesticides impact insect populations via direct toxicity
and sub-lethal effects (mainly insecticides), and indirectly through ha-
bitat alteration (mainly herbicides). Bioaccumulation, due to chronic
exposure and biomagnification along food chains, pose significant ad-
ditional threats for insect populations (Hayes and Hansen, 2017) that
can have undetected harmful effects on insect physiology and

behaviour (Desneux et al., 2007).
Many fertilizers (including organic and mineral fertilizers) widely

used in agriculture, can affect insect populations indirectly, via impacts
on the composition or quality of plant resources, on structural habitat
properties or causing soil acidification, and through eutrophication
(Fox, 2013; Villalobos-Jiménez et al., 2016). Effects of high-levels of
fertilizer use can be positive for a few herbivorous insects in agroeco-
systems (e.g., aphids; Kytö et al., 1996), but have negative effects on
most insects (Kurze et al., 2018; Habel et al., 2019a). Also, the use of
anthelmintic substances (e.g. Ivermectin) in livestock systems has a
negative impact on the abundance and richness of insects associated
with dung decomposition (Verdú et al., 2018).

Industrial pollution (including air pollution, chemicals from fac-
tories or mining operations, and heavy metals) also causes insect po-
pulation declines (Zvereva and Kozlov, 2010). Similar to pesticides,
sub-lethal negative effects on individuals, and biomagnification along
food chains, add further threats to insect populations (Gall et al., 2015).
Several economically important insect species (such as pollinators or
natural enemies of pests) may be threatened by chronic exposure to
pollutants (e.g., heavy metals), but community-wide effects are often
not well understood (Skaldina and Sorvari, 2019). Freshwater in-
vertebrates (including several insect taxa) are disproportionately af-
fected by pollution, with over 41% of species on the IUCN Red List
threatened by water pollution (Darwall et al., 2012). Industrial dis-
charge, sewage, and agricultural and urban run-off as well as increased
sediment deposition, all reduce freshwater habitat quality (Jones et al.,
2012).

Light and noise pollution are becoming increasingly pervasive
globally (Morley et al., 2014; Gaston, 2018; Owens and Lewis, 2018),
and gaining a better understanding of these novel impacts is critical.
Nocturnal insects are especially vulnerable to changes in natural light/
dark cycles. Light pollution interferes with insects that use natural light
(from the moon or stars) as orientation cues for navigation and with
communication of insects that use bioluminescent signals, such as
fireflies. It desynchronizes activities triggered by natural light cycles,
such as feeding and egg-laying, and causes temporal mismatches in
mutualistic interactions (Owens and Lewis, 2018). Noise pollution
greatly changes the acoustic landscape and interferes with acoustic
communication of insects and their auditory surveillance of the en-
vironment, having significant fitness costs (Morley et al., 2014). Finally,
the effects of electromagnetic pollution on insects and other life-forms,
including humans, are still very badly understood and deserve further
exploration (Thielens et al., 2018).

2.3. Invasive species

Invasive alien species (IAS) are anthropogenically introduced spe-
cies to locations outside of their natural geographical range, which have
a demonstrable environmental, ecological, or socio-economic effect
(Turbelin et al., 2017). Impacts may be direct (e.g., through predation,
competition, or disease vectoring) and/or indirect (e.g., through trophic
cascades, co-extinction of herbivore or parasitoid hosts). Species in-
troductions may ultimately lead to local loss of native insects, with
those exhibiting narrow geographic distributions or specialist feeding
habits being most vulnerable (Wagner and Van Driesche, 2010).

Direct competition by non-native species can drive local populations
towards extinction (Williamson and Griffiths, 1996; Sala et al., 2000;
Havel et al., 2015). The degree of ecological overlap with the invasive
ladybird, Harmonia axyridis Pallas, 1773, was a main predictor for local
extinctions of endemic ladybird fauna in Britain (Comont et al., 2014).
Invasive ants (e.g. the Argentine ant, Linepithema humile Mayr, 1868)
are perhaps the best example of IAS that challenge native insect fauna.
Due to their large numbers and generalist predatory behaviour, many
invasive ant species are primary threats to native insects (see Wagner
and Van Driesche, 2010). The invasive amphipod Dikerogammarus vil-
losus (Sowinsky, 1894) kills significantly greater numbers of aquatic
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invertebrates than native amphipods, reducing invertebrate diversity
and displacing native amphipod species (Dick et al., 2002; Rewicz et al.,
2014).

The high biomass and dense structure of invasive plants often has a
major impact on insect communities (Strayer, 2010). The monotypic
nature of invasive plants reduces the quantity and/or quality of food,
and leads to declines in essential resources for many insects (Severns
and Warren, 2008; Preston et al., 2012; Havel et al., 2015). Ad-
ditionally, invasive plants can change matrix composition, adversely
affecting insect host-parasitoid relationships (Cronin and Haynes,
2004). Invasive plants may also provide eco-evolutionary traps for
native insects. Once an invader has outcompeted and displaced native
hosts, it may act as a host that results in poor larval development, or
increased larval mortality (Sunny et al., 2015), leading to insect po-
pulation decline.

Invasive pathogens can also lead to native insect extinctions.
European strains of the fungal pathogen, Nosema bombi, are thought to
have resulted in the widespread collapse of North American bum-
blebees (Cameron and Sadd, 2020). Furthermore, the introduced
bumblebee Bombus terrestris L., 1758 has caused the disappearance of
the Patagonian bumblebee, B. dahlbomii Guérin-Méneville, 1835, across
much of its native range, either due to direct competition or the in-
troduction of pathogens to which the native species have no defences
(Cameron and Sadd, 2020).

2.4. Climate change

Climate change poses threats to insects and the ecosystems they
depend on, whether terrestrial (Burrows et al., 2011), freshwater
(Woodward et al., 2010) or subterranean (Mammola et al., 2019b). The
complexity of global climate change goes far beyond simply global
temperature increase (Walther et al., 2002; Ripple et al., 2019). It also
leads to a variety of multifaceted ecological responses to environmental
changes, including shifts in species distribution ranges (Chen et al.,
2011), phenological displacements (Forrest, 2016), novel interactions
among previously isolated species (Krosby et al., 2015), extinctions
(Dirzo et al., 2014), and other unpredictable cascading effects at dif-
ferent levels of ecosystem organisation (Peñuelas et al., 2013). Changes
in species phenology, distributions, reduction in body size, assemblage
structure, and desynchronization of species-specific interactions are all
linked to climate change (Scheffers et al., 2016). For example, some
British butterflies are emerging earlier than previously recorded, and in
some cases, before their nectar plants have flowered (Roy and Sparks,
2000). In addition, changes in functional feeding group diversity can be
associated with changes in trophic interactions in food webs (Jourdan
et al., 2018).

Aquatic insects are disproportionately affected by climate change,
due to the synergistic negative effects on freshwater ecosystems overall
(Reid et al., 2019), and these insects having limited dispersal capacity,
as well as them confronting barriers to their dispersal, particularly at
higher elevations (Bush et al., 2013). There is a need for the develop-
ment and implementation of bioindicators, and dragonflies are emer-
ging as taxonomic champions for aquatic ecosystems (Chovanec et al.,
2015; Dutra and De Marco, 2015; Valente-Neto et al., 2016; Vorster
et al., 2020). Bush et al. (2013) dubbed dragonflies as ‘climate can-
aries’, with dragonfly species assemblages being three times more
sensitive to climate variables than macroinvertebrate assemblages at
family level. While there is evidence that water quality improvements
have offset recent climatic debt for stream macroinvertebrates
(Vaughan and Gotelli, 2019), this continued mitigation is not likely to
reverse or even halt trends in aquatic insect species declines.

2.5. Overexploitation

Though rarely considered, overexploitation may play a role in insect
decline for many groups. It primarily threatens free-living insects and

includes unsustainable harvesting for use as pets and decoration (as
souvenirs and jewels), or as food resources and traditional medicine.
Various insects are kept as pets, but they are especially popular in
Japan, where there are many illegally traded insects (Actman, 2019).
Ants maintained in commercial farms are probably the most common
pet insect in USA, but field crickets, praying mantids, antlions, cater-
pillars, and mealworms are also reported worldwide as household pets
(Smithsonian, 2019).

Ornamental insects as preserved decorations are also numerous,
particularly regarding Lepidoptera and Coleoptera. Coloured wings and
elytra are used in jewellery, embroidery, and pottery (Prasad, 2007;
Lokeshwari and Shantibala, 2010). In regions where market demand is
high, ornamental insects are frequently imported in large numbers
(Kameoka and Kiyono, 2003), which fuels an illegal export industry in
areas where high-demand insects occur naturally (Kameoka and
Kiyono, 2003; New, 2005). Unsurprisingly, this demand for ornamental
insects has driven declines of sought-after species (Tournant et al.,
2012; Huang, 2014).

Entomophagy is another driver of overexploitation (Morris, 2004;
Schabel, 2006). A worldwide inventory listed 2111 edible insect species
(Jongema, 2017), with number of collected individuals often exceeding
regeneration capacity (Cerritos, 2009). Wild populations are threatened
because collection practices became less selective and sustainable
(Illgner and Nel, 2000; Latham, 2003; Ramos-Elorduy, 2006), due to
the dissipation of indigenous knowledge, which often includes the
sustainable use of edible insects and their habitat (Kenis et al., 2006). In
many subsistence societies, insects provide protein supplements and
can constitute nearly a third of total protein intake during periods of
meat protein shortage (Dufour, 1987).

The overexploitation of insects as alternative medicine also poses a
risk. Demand for the hundreds of insect species that are used in such
practices is reportedly threatening insect biodiversity (Feng et al.,
2009). The commercial value of products based on medicinal insects
comprises about US$100 million per year (Themis, 1997).

2.6. Co-extinction

Specialisation has led to many insects becoming co-dependent, and
therefore, vulnerable to co-extinction (Dunn, 2005; Dunn et al., 2009).
Among these, numerous insect lineages have diversified with verte-
brates, either as parasites, epizoic mutualists, or commensal copro-
phages. At least 5000 louse (Phthiraptera) species have been described,
of which most (~4000) use avian hosts (Price et al., 2003; Smith et al.,
2011). About 2500 flea species are recognised (Whiting et al., 2008)
and> 6000 species of dung beetles are named (Schoolmeesters, 2019).
Numerous insect lineages have also diversified with invertebrate hosts.
Insects of the order Strepsiptera (twisted-wing insects) are obligate
parasites of other insects, and>600 species have been described,
though they are dwarfed by the parasitic wasps, which are estimated to
include as many as 350,000 species (Gaston, 1991). Insects co-depen-
dent on plants are also extremely species rich, with gall-inducing insects
alone comprising as many as 211,000 species (Espírito-Santo and
Fernandes, 2007). Similarly, mycophagous insects are extremely di-
verse and often co-dependent on a few fungal hosts (Wertheim et al.,
2000).

Co-dependent insects are greatly at risk of extinction through their
specialised ecologies (Dunn, 2005; Dunn et al., 2009), even though
examples of co-extinctions are rare (Colwell et al., 2012). Models sug-
gest that co-extinction events should be far more common (especially
among plant-dependent beetles and bird lice) than present records
suggest (Koh et al., 2004a). This is either because of co-extinction
events are poorly recorded, or due to unrecognised network resilience
owing to the ability of co-dependent insects being able to use many
more species than previously assumed (Colwell et al., 2012).

In the case of co-dependent insects, trophic cascades can be parti-
cularly relevant (Strona and Bradshaw, 2018). Host species are lost due
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to habitat loss, as has been shown in Lepidoptera-host plant systems
(Pearse and Altermatt, 2013). A historical example of indirect effects of
invasive species is the co-extinction of Christmas Island flea (Xenopsylla
nesiotes Jordan & Rothschild, 1909), resulting from loss of the Christmas
Island rat (Rattus macleari Thomas, 1887) due to the introduced black
rat (Rattus rattus L., 1758) (Kwak, 2018). There is evidence that decline
of mammals due to synergistic causes (climate change, habitat de-
struction, hunting, etc.) lead to a pervasive co-decline of dung beetles at
continental scales (Bogoni et al., 2019). The overexploitation of birds
by the pet trade also threatens their dependent insects (Eaton et al.,
2015).

3. We lose much more than species

All species, including insects, are valuable as unique combinations
of evolutionary events, have innate value, and so require care and
conservation. Yet, as George Orwell put it in Animal Farm, “All animals
are equal, but some animals are more equal than others.”, with in-
vertebrates being largely neglected in conservation efforts worldwide
(Cardoso et al., 2011), the so-called “institutional vertebratism”
(Leather, 2013). There is no reason why an insect species deserves
much less attention than a bird or mammal species. However, the im-
portance of insect population declines and consequent extinctions goes
way beyond loss of species and their intrinsic value.

Each species represents individuals, biomass, and functions being
lost, and therefore not available for other living beings. Each species
contributes a unique piece to a complex living tapestry that changes in
space and time. Each species represents an unrepeatable part of the
history of life. In turn, each species also interacts with others and their
environment in distinctive ways, weaving a complex network that
sustains other species, including us (Fig. 1).

3.1. Abundance and biomass

Hallmann et al. (2017) documented a loss of biomass of flying in-
sects of about 75% over 30 years. This negative trend occurred in
nature reserves in Germany. These results are a warning and stimulated
an intense debate on the insect crisis. Also, in other parts of Germany,
declining abundances and biomass for a broader set of arthropods have
been recorded (Seibold et al., 2019). Similar trends have been recorded
for other parts of Europe. Large declines in abundance have also oc-
curred among UK butterflies and moths (Conrad et al., 2004, 2006;
Thomas et al., 2004; Shortall et al., 2009; Fox, 2013; Knowler et al.,
2016; Storkey et al., 2016), dragonflies (Clausnitzer et al., 2009) and
carabid beetles (Brooks et al., 2012) in recent years. Negative trends are
not restricted to Europe, but also occur in other parts of the world
(Wagner, 2019). A global meta-analysis of insect abundances revealed a
45% decline across two-thirds of the taxa evaluated (Dirzo et al., 2014).
Yet, the specific trend and strength of the decline or eventual increase is
not universal and changes according to taxon and region (Macgregor
et al., 2019).

Declines in insect abundance and biomass always precede species
extinctions, as this is a continuous, not binary, process. Although cri-
tically dependent on the ecological role of the species, numerical loss in
abundance, and by extension, biomass, reflect impairment of ecological
function and provisioning of ecosystem services. For example, biomass
is a measurement of the amount of energy flowing through trophic le-
vels that insects represent. In turn, reduced abundance and biomass
affects ecosystem functionality and resilience, food web structure, and
species interactions, such as plant-pollinators, population persistence,
and many ecosystem services (Biesmeijer et al., 2006; Losey and
Vaughan, 2006).

These studies highlight numerical declines in abundance and bio-
mass at the landscape level, but also inform us that declines are not
restricted to rare and endangered species only, but are also present for
more abundant species (Habel and Schmitt, 2018; Hallmann et al.,

2020). While insect conservation often target charismatic, rare, or
threatened species, the temporal and spatial trends of common and
widespread species are often overlooked (Gaston, 2011). Numerical
declines of common and widespread species impact the functioning of
ecosystems more severely. As such, safeguarding ecosystem function
may be suffering un-noticed, highlighting the need for insect mon-
itoring and conservation beyond rare and threatened species.

3.2. Differences in space and time

Insects and most arthropods are relatively small organisms that
often occupy small microhabitats. As we move horizontally across a
seemingly homogenous patch, small features, such as dead wood, rocks,
or even a single tree can alter conditions, leading to replacement of
species and allowing higher richness to persist within the larger patch
(Barton et al., 2009; Stagoll et al., 2012; Crous et al., 2013). Insects also
partition themselves vertically, i.e. in a forest, we find soil, ground
active, undergrowth, sub-canopy, and canopy species, all of which
contribute to the hyper-diversity found in, for example, tropical rain-
forests (Stork et al., 2016). This way, insect assemblages tend to be
composed of few very common and many rare species (Pachepsky et al.,
2001; McGill et al., 2007), leading to high levels of beta-diversity. Such
high levels of species turnover can be difficult to monitor, as research
tends to describe overall arthropod richness and compositional changes
driven by the common species. Given their nature, it is much harder to
quantify how rare species are responding to anthropogenic pressures
(van Schalkwyk et al., 2019).

Processes that homogenise natural systems decrease beta-diversity
by removing rare species from the system. These pressures not only
remove native species, but also simplify the system, reducing the di-
versity of resources and biological interactions. Furthermore, they
allow secondary invasions from ecologically dominant alien invasive
insects that outcompete or simply feed on the native fauna (Silverman
and Brightwell, 2008; Roy et al., 2016; see section on invasive species).
The edges of transformed areas, including linear structures such as
roads, show large edge effects on beta-diversity. This suggests that the
presence of dominant species, either native or alien, reduce niche space
by outcompeting and effectively replacing rare species (Swart et al.,
2019).

Insects do not just partition themselves across space, but also time.
Tropical rainforest cicadas and bush-crickets call during different times
of the day and night or at different frequencies to avoid overlap
(Schmidt and Balakrishnan, 2015). At the other extreme are the peri-
odic cicadas, which only emerge as adults every 13 or 17 years (prime
numbers to avoid frequent overlap). One of the major concerns with
global climate change is how warmer temperatures might be interfering
with arthropod phenology. For example, a population of the 17-year
cicada emerged after just 13 years in 2017 (Sheikh, 2017), which is
most likely due to the alteration of host tree cycles (Karban et al.,
2000).

3.3. Phylogenetic diversity

Phylogenetic diversity takes the evolutionary relationships between
taxa into account and reflects the evolutionary history of each species.
Communities with identical taxonomic diversity may differ widely with
respect to their evolutionary past, depending on the time of divergence
of species from their nearest common ancestor (Webb et al., 2002;
Graham and Fine, 2008). Studying the effects of species extinction on
the phylogenetic tree of life is therefore imperative and provides a
complementary view to the loss of taxon diversity.

Insects constitute a major branch of the tree of life, representing ca.
480 million years of evolution (Misof et al., 2014). Preserving this
phylogenetic diversity is crucial to protect the evolutionary trajectories
of the most successful taxonomic group on our planet. Understanding
the phylogenetic relationships among and within species is crucial to
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avoid detrimental decisions in conservation management, such as ne-
glecting populations with unique evolutionary histories (e.g., Price
et al., 2007), (re-)introducing non-native species or mis-adapted evo-
lutionary lineages (Moritz, 1999), or outbreeding depression in captive
breeding projects (Witzenberger and Hochkirch, 2011).

Insects comprise many unique evolutionary lineages with some old
relict groups, such as the Zoraptera, Mantophasmatodea, Mecoptera, or
Grylloblattodea. Among the latter, the Kosu Rock Crawler (Galloisiana
kosuensis Namkung, 1974) is listed as Critically Endangered on the
IUCN Red List of Threatened Species (Chung et al., 2018). This species
is only known from a single cave, whose temperature has risen by>
3 °C from increased tourism, reaching 1400 visitors per day. Another
example is the Mauritian endemic grasshopper species Pyrgacris relictus
Descamps, 1968, which belongs to a distinct family (Pyrgacrididae)
with only two species. This species, which only feeds on an endemic
palm species is Critically Endangered, and only known from a single
locality, imperilled by construction of a golf course (Hugel, 2014). Loss
of such distinct evolutionary branches of the tree of life is irreversible
and leads to the loss of unique genetic diversity.

3.4. Functional diversity

Functional diversity quantifies the components of biodiversity that
influence how an ecosystem operates or functions (Tilman et al., 2001)
and reflects the amount of biological functions or traits displayed by
species in given communities. Communities with completely different
species composition may be characterized by low variation in func-
tional traits, with phylogenetically unrelated species replacing others
with similar functional roles (Villéger et al., 2012). The functional di-
versity and role of insects in maintaining ecological processes are issues
of immense interest, and are particularly relevant to landscapes un-
dergoing anthropogenic change and biodiversity loss (Ng et al., 2018).
This is because functional diversity provides a direct link between
biodiversity and ecosystem processes. Moreover, loss of particular traits
can result in changes to key ecological processes promoted by insects,
such as pollination (Saunders, 2018) and decomposition (Barton and
Evans, 2017).

Threatened species are not a random subset of all the species.
Threatened species tend to share biological traits that influence their
extinction risk (Chichorro et al., 2019). In general, specialists in either
habitat type or feeding regime, very small or very large species, and
poor dispersers, are at highest risk. The decline of both habitat and
resource specialist species has been documented for bees, beetles,
butterflies, dragonflies, and moths (e.g., Kotze and O'Hara, 2003; Koh
et al., 2004b; Bartomeus et al., 2013). Species with narrower habitat
requirements have less ability to escape from multiple pressures. The
resource specialists depend not only on their effective population size,
but also on the availability of their resources. When organisms are
dependent on only one resource type, co-extinctions might also be more
likely to occur.

Demise of both large and the very small species occurs among
vertebrates (e.g., Ripple et al., 2017). There are two main reasons ex-
plaining the demise of large species: 1) they usually require more re-
sources and therefore exist at lower population densities than smaller
species, which in turn increases the risk of local extinction due to un-
predictable events; 2) they usually have traits related to slower life
cycles and therefore respond slower to environmental change. On the
other hand, smaller species often decline in greater proportions than
larger ones, due to their lower competitive ability (Powney et al.,
2015). However, small insects can be sensitive to fragmentation (Basset
et al., 2015) and habitat loss (Jauker et al., 2013) due to poor dispersal
ability.

3.5. Ecological networks

Insects are crucial in structuring and maintaining communities,
forming intricate networks that can influence species' coevolution
(Guimarães Jr. et al., 2017), coexistence (Bastolla et al., 2009), and
community stability (Thébault and Fontaine, 2010; Rohr et al., 2014).
Insect extinctions not only reduce species diversity, but also simplify
networks, and we may be losing interactions at a higher rate than
species (Tylianakis et al., 2008; Valiente-Banuet et al., 2015). The im-
plications of these changes will depend on the role a species plays in the
network (Bascompte and Stouffer, 2009; Tylianakis et al., 2010). The

Table 1
Ecosystem services provided by insects.
(Adapted from Samways, 2019)

Type of service Area Provision

Commercial Provisioning services Medicine New treatments
Engineering Biomimetics
Monitoring Monitoring of habitat quality
Genetic resources New chemicals
Ornaments Insect houses and deadstock
Biocontrol Biocontrol agents
Production Food and fibre

Non-commercial Regulating services Climate Climate regulation
Disease control Burial of dung or carcasses
Erosion Limiting erosion
Invasion resistance Controlling invasive species
Herbivory Nutrient cycling
Natural hazards Protection from hazards
Pollination Reproduction of flowering plants
Plant dispersal Seed dispersal of plants
Water flow Regulating water movement
Water treatment Purification by larvae

Supporting services Nutrient cycling Through saprophagy/coprophagy
Oxygen production Through interaction with plants
Habitat creation Building mounts, nests, and others
Soil formation Breakdown of plants, dung and carcasses

Cultural services Cultural heritage Arts, myths, and stories
Education Connecting with nature
Knowledge systems Models for scientific research
Recreation Nature tourism
Sense of place Endemic species
Spiritual values Views on nature
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more a species shapes a network, the more the architecture will change
if it goes extinct. Furthermore, species conferring network structure are
most at risk of going extinct (Saavedra et al., 2011). Thus, we should
aim to preserve both species and their interactions (Tylianakis et al.,
2010).

In mutualistic networks, plants and insects weave nested relations
(Bascompte et al., 2003). This leads to specialists interacting with
subsets of generalist interaction partners. Nested networks tend to mi-
tigate random extinctions or the loss of specialists (Memmott et al.,
2004). In this case, when species are lost, the structure remains. In
contrast, the extinction of generalists erodes the nested architecture. In
this case, the loss of focal species makes the system more prone to co-
extinction cascades (Dunne et al., 2002).

In antagonistic networks, species form intertwined subgroups,
where inter-module interactions are rare (Olesen et al., 2007). Con-
nectors and network hubs are important contributors to the modular
structure, with beetles, flies, and small bees being the most common
connectors (Olesen et al., 2007). Alarmingly, some of these hub species
are currently at risk of extinction (Sirois-Delisle and Kerr, 2018). They
not only benefit interaction partners, but also give cohesion to the en-
tire community. Their disappearance may result in the fragmentation of
networks into isolated modules (Bascompte and Stouffer, 2009;
Tylianakis et al., 2010). This endangers communities by making them
more susceptible to perturbations (Olesen et al., 2007).

Interactions drive the coevolution of plants and insects (Bronstein
et al., 2006). They can result in remarkable trait complementarity, as in
the case of pollination or ant protection of plants (Bronstein et al.,
2006). Yet, in complex networks, indirect effects steer the evolution of
traits (Guimarães Jr. et al., 2017). In species-rich networks, all members
influence how traits evolve in the community. This means that extinc-
tions will affect direct partners, and can reduce community-wide trait
integration. This could incapacitate entire communities from re-
sponding to environmental change.

4. We depend on insects

Insects contribute to the four main types of ecosystem services de-
fined by the Millennium Ecosystem Assessment (2003): i) provisioning
services, ii) supporting services, iii) regulating services, and iv) cultural
services (Noriega et al., 2018; Table 1). This animal group contributes
to the structure, fertility, and spatial dynamics of soil, and they are a
crucial element for maintaining biodiversity and food webs (Schowalter
et al., 2018). A large number of insects provide medical or industrial
products (Ratcliffe et al., 2011), and globally,> 2000 insect species are
consumed as food. Also, in agroecosystems, insects perform many dif-
ferent functions, such as pollination, nutrient and energy cycling, pest
suppression, seed dispersal, and decomposition of organic matter, feces,
and carrion (Schowalter et al., 2018). Today, the agricultural sector
already actively uses insect antagonists of pests (classical and aug-
mentative biological control) or establishes habitat management prac-
tices to promote insects as natural enemies of pests. In this context, as a
clear consequence, insect declines can negatively affect the main-
tenance of food supply and put at risk human well-being.

All described services translate to monetary value. In an initial ap-
proach, Costanza et al. (1997) estimated a global value of ecosystem
services at US$33 trillion annually. Later, ecosystem services provided
by insects were estimated to have a value of $57 billion per year in the
United States alone (Losey and Vaughan, 2006), and insect pollination
may have an economic value of $235–577 billion per year worldwide
(IPBES, 2016). Additionally, the annual contribution of ecosystem
services provided by dung beetles to the cattle industry can reach $380
million in the USA (Losey and Vaughan, 2006) and £367 million in the
UK (Beynon et al., 2015).

However, there is little knowledge on the functional roles that in-
sects play in many ecosystems, with their values likely greatly under-
estimated. Absence of detailed information is related to lack of

manipulative controlled experiments for several services (Noriega et al.,
2018). Also, the few comprehensive studies available are focused on a
few iconic groups or functions, such as bees and pollination (e.g.,
Brittain et al., 2010), ground beetles and pest control (e.g., Roubinet
et al., 2017), dung beetles and decomposition (e.g., Griffiths et al.,
2016), or aquatic insects and energy flow (e.g., Macadam and Stockan,
2015). This critical shortfall must be addressed to conserve insect di-
versity for our own survival.

5. We need immediate action

The current extinction crisis is deeply worrisome. Yet, what we
know is only the tip of the iceberg. We provide here numerous examples
of the loss of species diversity and abundance, and their consequences,
but these are some of the few well-documented examples. Most insect
species are undescribed (possibly as many as 80%; Stork, 2018), and
even for most of those with names we have no distributional or popu-
lation trend data to record ongoing extinctions. Edward O. Wilson
(1992) called for a Linnean Renaissance to fully document and ap-
preciate what is out there, and where, especially as many insect species
are going extinct even before being described (Centinelan extinctions).

Despite the known threats and consequences of insect extinction,
decision-makers and civil society are only now becoming aware of the
scale of the problem. Conservation efforts have largely been focused on
charismatic megafauna, especially birds and mammals, with little
thought on ecosystem connectivity (Cardoso et al., 2011; Donaldson
et al., 2016; Mammides, 2019). Even within insects, some taxa have
been favoured, such as butterflies and, more recently, pollinators.
Legislation and agreements in the US (Endangered Species Act) and
Europe (Habitats Directive) clearly reflect such biases (Cardoso, 2012;
Leandro et al., 2017). Partly to blame for these biases is a lack of ca-
pacity and data, which, in the view of policymakers, leads to a lack of
funding, which in turn, feeds back into lack of capacity and data, in a
continuous cycle.

Existing data on insect population trends and drivers have several
problems (Cardoso and Leather, 2019), yet it is possible to minimize
them by taking advantage of multiple datasets. Published data from
scientific papers or grey literature, online sources, such as the Predicts
or Biotime databases, primary data from museum collections, as well as
multiple citizen science projects could be collated to better understand
richness, abundance, and composition data on insects across space and
time. Knowledge gaps in space, habitat types, phylogeny, function, and
time could then be identified, and additional efforts made to embrace
them. Finally, any changes can really only be fully understood when
possible drivers are considered. Given the heterogeneity of data
sources, available predictor variables may vary across regions. Never-
theless, data on predictor values for the six main extinction drivers are
often available at global (e.g., Forest Watch; Hansen et al., 2013) or at
least regional levels.

Given the multiple dimensions of insect diversity loss, any research,
monitoring and conservation initiative must minimize the phylogenetic,
functional, habitat, spatial, and temporal biases. Recently, Cardoso and
Leather (2019) proposed the development and global adoption of a
standardized and optimized scheme that would allow comparisons
across space and time with minimum investment per gain unit (Cardoso
et al., 2016). However, while a monitoring scheme is running, we know
enough to act immediately (Harvey et al., 2020).

Solutions include the removal of the root causes of the problem, the
indirect drivers, as essential components of a transformative change of
our economy and society (IPBES, 2019). Many solutions are now
available to support insect populations at sustainable levels, especially
through preserving and recovering natural habitats, eliminating dele-
terious agricultural practices including harmful pesticides, im-
plementing measures for avoiding or eliminating the negative impacts
of invasive species, taking aggressive steps to reduce greenhouse gas
emissions, and curbing the deleterious effects of overexploitation of
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many taxa. Multiple countries are already adopting concrete measures
for averting further insect population depletions. As an example, many
European countries are banning or phasing-out glyphosate-based weed
killers. Solutions are now available – we must act upon them (Samways
et al., 2020).
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